Learn R Programming

rsem (version 0.5.1)

Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

Description

A robust procedure is implemented to estimate means and covariance matrix of multiple variables with missing data using Huber weight and then to estimate a structural equation model.

Copy Link

Version

Install

install.packages('rsem')

Monthly Downloads

482

Version

0.5.1

License

GPL-2

Maintainer

Last Published

August 26th, 2023

Functions in rsem (0.5.1)

semdiag.combinations

Enumerate the Combinations of the Elements of a Vector
rsem.weight

Calculate weight for each subject
rsem.vech

Stacking lower triange of a matrix to a vector
rsem.indexvc

rsem.indexvc function
semdiag.read.eqs

Import of EQS outputs into R
semdiag.run.eqs

Run EQS from R
rsem.lavaan

Conduct robust SEM analysis using lavaan
rsem.fit

Calculate robust test statistics
rsem

The main function for robust SEM analysis
rsem.Ascov

Sandwich-type covariance matrix
rsem.se

Calculate robust standard errors
rsem.gname

Internal function
rsem.vec

Stacking a matrix to a vector
rsem.emmusig

Robust mean and covariance matrix using Huber-type weight
rsem.switch

swith function
rsem.switch.gamma

Internal function
rsem.DP

Generate a duplication matrix
mardiamv25

Simulated data
rsem.index

rsem.index function
rsem.ssq

Calculate the squared sum of a matrix
rsem-package

Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
rsem.pattern

Obtaining missing data patterns
rsem.indexv

rsem.indexv function
rsem.print

Organize the output for Lavaan with robust s.e. and test statistics