stan
or sampling
for
final inferences and only using vb
to get a rough idea of the parameter
distributions.## S3 method for class 'stanmodel':
vb(object, data = list(), pars = NA, include = TRUE,
seed = sample.int(.Machine$integer.max, 1),
init = 'random',
check_data = TRUE, sample_file = tempfile(fileext = '.csv'),
algorithm = c("meanfield", "fullrank"), ...)
stanmodel
.list
or environment
providing the data for the model or a character vector
for all the names of objects used as data.
See the notes in stan
.NA
, then a character vector naming parameters,
which are included in the output if include = TRUE
and excluded
if include = FALSE
. By default, all parameters are included.pars
as.integer
will be applied to
it. If as.integer
produc0
, string "0"
or "random"
,
a function that returns a list, or a named list of initial parameter
values.
"0"
: initialize all to be zero on the unconstrained support;
"
TRUE
, the data would be preprocessed;
otherwise not. If the data is not checked and preprocessed, it is safe
to leave it to be the default TRUE
. See the notes in
stan
iter
(positiveinteger
), the maximum number of iterations,
defaults to 10000.grad_samples
(positiveinteger
stanfit-class
stanmodel
The manuals of CmdStan and Stan.m <- stan_model(model_code = 'parameters {real y;} model {y ~ normal(0,1);}')
f <- vb(m)
Run the code above in your browser using DataLab