# NOT RUN {
if (!exists("example_model")) example(example_model)
# Extract posterior sample after MCMC
draws <- as.matrix(example_model)
print(dim(draws))
# For example, we can see that the median of the draws for the intercept
# is the same as the point estimate rstanarm uses
print(median(draws[, "(Intercept)"]))
print(example_model$coefficients[["(Intercept)"]])
# The as.array method keeps the chains separate
draws_array <- as.array(example_model)
print(dim(draws_array)) # iterations x chains x parameters
# Extract draws from asymptotic Gaussian sampling distribution
# after optimization
fit <- stan_glm(mpg ~ wt, data = mtcars, algorithm = "optimizing")
draws <- as.data.frame(fit)
print(colnames(draws))
print(nrow(draws)) # 1000 draws are taken
# Extract draws from variational approximation to the posterior distribution
fit2 <- update(fit, algorithm = "meanfield")
draws <- as.data.frame(fit2, pars = "wt")
print(colnames(draws))
print(nrow(draws)) # 1000 draws are taken
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab