# NOT RUN {
# Use rstanarm example model
if (!exists("example_model")) example(example_model)
fit <- example_model
#####################################
### Intervals and point estimates ###
#####################################
plot(fit) # same as plot(fit, "intervals"), plot(fit, "mcmc_intervals")
p <- plot(fit, pars = "size", regex_pars = "period",
prob = 0.5, prob_outer = 0.9)
p + ggplot2::ggtitle("Posterior medians \n with 50% and 90% intervals")
# Shaded areas under densities
bayesplot::color_scheme_set("brightblue")
plot(fit, "areas", regex_pars = "period",
prob = 0.5, prob_outer = 0.9)
# Make the same plot by extracting posterior draws and calling
# bayesplot::mcmc_areas directly
x <- as.array(fit, regex_pars = "period")
bayesplot::mcmc_areas(x, prob = 0.5, prob_outer = 0.9)
##################################
### Histograms & density plots ###
##################################
plot_title <- ggplot2::ggtitle("Posterior Distributions")
plot(fit, "hist", regex_pars = "period") + plot_title
plot(fit, "dens_overlay", pars = "(Intercept)",
regex_pars = "period") + plot_title
####################
### Scatterplots ###
####################
bayesplot::color_scheme_set("teal")
plot(fit, "scatter", pars = paste0("period", 2:3))
plot(fit, "scatter", pars = c("(Intercept)", "size"),
size = 3, alpha = 0.5) +
ggplot2::stat_ellipse(level = 0.9)
####################################################
### Rhat, effective sample size, autocorrelation ###
####################################################
bayesplot::color_scheme_set("red")
# rhat
plot(fit, "rhat")
plot(fit, "rhat_hist")
# ratio of effective sample size to total posterior sample size
plot(fit, "neff")
plot(fit, "neff_hist")
# autocorrelation by chain
plot(fit, "acf", pars = "(Intercept)", regex_pars = "period")
plot(fit, "acf_bar", pars = "(Intercept)", regex_pars = "period")
##################
### Traceplots ###
##################
# NOTE: rstanarm doesn't store the warmup draws (to save space because they
# are not so essential for diagnosing the particular models implemented in
# rstanarm) so the iterations in the traceplot are post-warmup iterations
bayesplot::color_scheme_set("pink")
(trace <- plot(fit, "trace", pars = "(Intercept)"))
# change traceplot colors to ggplot defaults or custom values
trace + ggplot2::scale_color_discrete()
trace + ggplot2::scale_color_manual(values = c("maroon", "skyblue2"))
# changing facet layout
plot(fit, "trace", pars = c("(Intercept)", "period2"),
facet_args = list(nrow = 2))
# same plot by calling bayesplot::mcmc_trace directly
x <- as.array(fit, pars = c("(Intercept)", "period2"))
bayesplot::mcmc_trace(x, facet_args = list(nrow = 2))
############
### More ###
############
# regex_pars examples
plot(fit, regex_pars = "herd:1\\]")
plot(fit, regex_pars = "herd:[279]")
plot(fit, regex_pars = "herd:[279]|period2")
plot(fit, regex_pars = c("herd:[279]", "period2"))
# }
# NOT RUN {
# For graphical posterior predictive checks see
# help("pp_check.stanreg")
# }
Run the code above in your browser using DataLab