# Load data
#:::::::::::::::::::::::::::::::::::::::
data("ToothGrowth")
df <- ToothGrowth
df$dose <- as.factor(df$dose)
# Independent measures ANOVA
#:::::::::::::::::::::::::::::::::::::::::
# Compute ANOVA and display the summary
res.anova <- Anova(lm(len ~ dose*supp, data = df))
anova_summary(res.anova)
# Display both SSn and SSd using detailed = TRUE
# Show generalized eta squared using effect.size = "ges"
anova_summary(res.anova, detailed = TRUE, effect.size = "ges")
# Show partial eta squared using effect.size = "pes"
anova_summary(res.anova, detailed = TRUE, effect.size = "pes")
# Repeated measures designs using car::Anova()
#:::::::::::::::::::::::::::::::::::::::::
# Prepare the data
df$id <- as.factor(rep(1:10, 6)) # Add individuals ids
head(df)
# Easily perform repeated measures ANOVA using the car package
design <- factorial_design(df, dv = len, wid = id, within = c(supp, dose))
res.anova <- Anova(design$model, idata = design$idata, idesign = design$idesign, type = 3)
anova_summary(res.anova)
# Repeated measures designs using stats::Aov()
#:::::::::::::::::::::::::::::::::::::::::
res.anova <- aov(len ~ dose*supp + Error(id/(supp*dose)), data = df)
anova_summary(res.anova)
Run the code above in your browser using DataLab