rpca
using ggplot
.Creates a pretty biplot which is showing the individual factor map overlayed by the variables factor map, i.e, plotting both the principal component scores and directions.
ggbiplot(
rpcaObj,
pcs = c(1, 2),
loadings = TRUE,
groups = NULL,
alpha = 0.6,
ellipse = TRUE,
alpha.ellipse = 0.2,
var_labels = TRUE,
var_labels.names = NULL,
ind_labels = TRUE,
ind_labels.names = NULL
)
Object returned by the rpca
function.
Array_like. An array with two values indicating the two PCs which should be used for plotting. By default the first two PCs are used, e.g., \(c(1,2)\).
Bool (\(TRUE\), \(FALSE\)), optional. If \(TRUE\), the eigenvectors are unit scaled by the square root of the eigenvalues \(W = W * diag(sqrt(eigvals))\).
Factor, optional. Factor indicating groups.
Scalar, optional. Alpha transparency for scatter plot.
Bool (\(TRUE\), \(FALSE\)), optional. Draw a 1sd data ellipse for each group, if \(TRUE\).
Scalar, optional. Alpha transparency for ellipse.
Bool (\(TRUE\), \(FALSE\)), optional. Plot variable names, if \(TRUE\).
Array_like, optional. User specific labels for the individuals.
Bool (\(TRUE\), \(FALSE\)), optional. Plot data point names, if \(TRUE\).
Array_like, optional. User specific labels for data points.