Learn R Programming

rsvd (version 1.0.5)

ggcorplot: Variables factor map for rpca using ggplot.

Description

Creates a pretty plot which is showing the correlation of the original variable with the principal component (PCs).

Usage

ggcorplot(
  rpcaObj,
  pcs = c(1, 2),
  loadings = TRUE,
  var_labels = FALSE,
  var_labels.names = NULL,
  alpha = 1,
  top.n = NULL
)

Arguments

rpcaObj

Object returned by the rpca function.

pcs

Array_like. An array with two values indicating the two PCs which should be used for plotting. By default the first two PCs are used, e.g., \(c(1,2)\).

loadings

Bool (\(TRUE\), \(FALSE\)), optional. If \(TRUE\), the eigenvectors are unit scaled by the square root of the eigenvalues \(W = W * diag(sqrt(eigvals))\).

var_labels

Bool (\(TRUE\), \(FALSE\)), optional. Plot variable names, if \(TRUE\).

var_labels.names

Array_like, optional. User specific labels for the variables

alpha

Scalar, optional. Alpha transparency of the arrows.

top.n

Scalar, optional. Number of (most influencial) variables to label with small circles.

See Also

rpca, ggplot

Examples

Run this code
# NOT RUN {
#

# }

Run the code above in your browser using DataLab