lyt <- basic_table() %>%
split_cols_by("ARM", split_fun = add_overall_level("All Patients",
first = FALSE
)) %>%
analyze("AGE")
tbl <- build_table(lyt, DM)
tbl
lyt2 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("RACE",
split_fun = add_overall_level("All Ethnicities")
) %>%
summarize_row_groups(label_fstr = "%s (n)") %>%
analyze("AGE")
lyt2
tbl2 <- build_table(lyt2, DM)
tbl2
library(tibble)
combodf <- tribble(
~valname, ~label, ~levelcombo, ~exargs,
"A_B", "Arms A+B", c("A: Drug X", "B: Placebo"), list(),
"A_C", "Arms A+C", c("A: Drug X", "C: Combination"), list()
)
lyt <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", split_fun = add_combo_levels(combodf)) %>%
analyze("AGE")
tbl <- build_table(lyt, DM)
tbl
lyt1 <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM",
split_fun = add_combo_levels(combodf,
keep_levels = c(
"A_B",
"A_C"
)
)
) %>%
analyze("AGE")
tbl1 <- build_table(lyt1, DM)
tbl1
smallerDM <- droplevels(subset(DM, SEX %in% c("M", "F") &
grepl("^(A|B)", ARM)))
lyt2 <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", split_fun = add_combo_levels(combodf[1, ])) %>%
split_cols_by("SEX",
split_fun = add_overall_level("SEX_ALL", "All Genders")
) %>%
analyze("AGE")
lyt3 <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM", split_fun = add_combo_levels(combodf)) %>%
split_rows_by("SEX",
split_fun = add_overall_level("SEX_ALL", "All Genders")
) %>%
summarize_row_groups() %>%
analyze("AGE")
tbl3 <- build_table(lyt3, smallerDM)
tbl3
Run the code above in your browser using DataLab