## Standard GFF columns.
GFFcolnames()
GFFcolnames(GFF1=TRUE) # "group" instead of "attributes"
tests_dir <- system.file("tests", package="rtracklayer")
test_gff3 <- file.path(tests_dir, "genes.gff3")
## Load everything.
df0 <- readGFF(test_gff3)
head(df0)
## Load some tags only (in addition to the standard GFF columns).
my_tags <- c("ID", "Parent", "Name", "Dbxref", "geneID")
df1 <- readGFF(test_gff3, tags=my_tags)
head(df1)
## Load no tags (in that case, the "attributes" standard column
## is loaded).
df2 <- readGFF(test_gff3, tags=character(0))
head(df2)
## Load some standard GFF columns only (in addition to all tags).
my_columns <- c("seqid", "start", "end", "strand", "type")
df3 <- readGFF(test_gff3, columns=my_columns)
df3
table(df3$seqid, df3$type)
makeGRangesFromDataFrame(df3, keep.extra.columns=TRUE)
## Combine use of 'columns' and 'tags' arguments.
readGFF(test_gff3, columns=my_columns, tags=c("ID", "Parent", "Name"))
readGFF(test_gff3, columns=my_columns, tags=character(0))
## Use the 'filter' argument to load only features of type "gene"
## or "mRNA" located on chr10.
my_filter <- list(type=c("gene", "mRNA"), seqid="chr10")
readGFF(test_gff3, filter=my_filter)
readGFF(test_gff3, columns=my_columns, tags=character(0), filter=my_filter)
Run the code above in your browser using DataLab