Learn R Programming

rv (version 0.949)

postsim: Generate Posterior Simulations for lm or glm Objects

Description

Generate posterior simulations for a given fitted linear or general linear model, assuming the standard "noninformative" priors on the unknowns.

Usage

postsim(fit)
  ## S3 method for class 'lm':
postsim(fit)
  ## S3 method for class 'glm':
postsim(fit)

Arguments

fit
an lm or glm object

Value

  • A (named) random vector for each fitted coefficient.

References

Kerman, Jouni and Gelman, Andrew. Manipulating and Summarizing Posterior Simulations Using Random Variable Objects. Technical report, Columbia University, New York.

Examples

Run this code
x <- 1:20
  y <- rnorm(length(x), mean=x, sd=10)
  print(summary(fit <- lm(y ~ x)))
  bayes.estimates <- postsim(fit)

Run the code above in your browser using DataLab