Generate posterior simulations for a given fitted linear or general linear model,
assuming the standard "noninformative" priors on the unknowns.
Usage
posterior(obj, ...)
## S3 method for class 'lm':
posterior(obj, \dots)
## S3 method for class 'glm':
posterior(obj, \dots)
Arguments
obj
an object
...
further arguments
Value
A (named) list of random vectors.
For example, the lm method returns
a list with components sigma (the residual s.d.)
and beta, the regression coefficients.
References
Kerman, J. and Gelman, A. (2007). Manipulating and Summarizing
Posterior Simulations Using Random Variable Objects.
Statistics and Computing 17:3, 235-244.