A dataset containing simulated data used in the accompanying paper to this package
sailsim
A list with 7 elements:
a matrix of dimension
100 x 20
where rows are observations and columns are
predictors
a numeric response vector of length 100
a numeric exposure vector of length 100
the true functions
The code used to simulate the data is available at
https://github.com/sahirbhatnagar/sail/blob/master/data-raw/SIMULATED_data.R.
See gendata
for more details. The true model is given by
$$Y = f1(X1) + f2(X2) + f3(X3) + f4(X4) + E * (2 + f3(X3) +
f4(X4))$$ where
f2(t)=3(2t - 1)^2
f3(t)= 4sin(2pi*t) / (2-sin(2pi*t)
f4(t)=6(0.1sin(2pi*t) + 0.2cos(2pi*t) + 0.3sin(2pi*t)^2 + 0.4cos(2pi*t)^3 + 0.5sin(2pi*t)^3)
Lin, Y., & Zhang, H. H. (2006). Component selection and smoothing in multivariate nonparametric regression. The Annals of Statistics, 34(5), 2272-2297.
Huang J, Horowitz JL, Wei F. Variable selection in nonparametric additive models (2010). Annals of statistics. Aug 1;38(4):2282.
Bhatnagar SR, Yang Y, Greenwood CMT. Sparse additive interaction models with the strong heredity property (2018+). Preprint.