# NOT RUN {
## Wooldridge( 2003 ): example 17.5, page 590
data(Mroz87)
myProbit <- glm( lfp ~ nwifeinc + educ + exper + I( exper^2 ) + age +
kids5 + kids618, family = binomial( link = "probit" ), data=Mroz87 )
Mroz87$IMR <- invMillsRatio( myProbit )$IMR1
myHeckit <- lm( log( wage ) ~ educ + exper + I( exper^2 ) + IMR,
data = Mroz87[ Mroz87$lfp == 1, ] )
# using NO labor force participation as endogenous variable
Mroz87$nolfp <- 1 - Mroz87$lfp
myProbit2 <- glm( nolfp ~ nwifeinc + educ + exper + I( exper^2 ) + age +
kids5 + kids618, family = binomial( link = "probit" ), data=Mroz87 )
all.equal( invMillsRatio( myProbit )$IMR1, invMillsRatio( myProbit2 )$IMR0 )
# should be true
# example for bivariate probit
library( "mvtnorm" )
library( "VGAM" )
nObs <- 1000
# error terms (trivariate normal)
sigma <- symMatrix( c( 2, 0.7, 1.2, 1, 0.5, 1 ) )
myData <- as.data.frame( rmvnorm( nObs, c( 0, 0, 0 ), sigma ) )
names( myData ) <- c( "e0", "e1", "e2" )
# exogenous variables (indepently normal)
myData$x0 <- rnorm( nObs )
myData$x1 <- rnorm( nObs )
myData$x2 <- rnorm( nObs )
# endogenous variables
myData$y0 <- -1.5 + 0.8 * myData$x1 + myData$e0
myData$y1 <- ( 0.3 + 0.4 * myData$x1 + 0.3 * myData$x2 + myData$e1 ) > 0
myData$y2 <- ( -0.1 + 0.6 * myData$x1 + 0.7 * myData$x2 + myData$e2 ) > 0
# bivariate probit (using rhobit transformation)
bProbit <- vglm( cbind( y1, y2 ) ~ x1 + x2, family = binom2.rho,
data = myData )
summary( bProbit )
# bivariate probit (NOT using rhobit transformation)
bProbit2 <- vglm( cbind( y1, y2 ) ~ x1 + x2, family = binom2.rho(
lrho = "identitylink" ), data = myData )
summary( bProbit2 )
# inverse Mills Ratios
imr <- invMillsRatio( bProbit )
imr2 <- invMillsRatio( bProbit2 )
all.equal( imr, imr2, tolerance = .Machine$double.eps ^ 0.25)
# tests
# E[ e0 | y1* > 0 & y2* > 0 ]
mean( myData$e0[ myData$y1 & myData$y2 ] )
mean( sigma[1,2] * imr$IMR11a + sigma[1,3] * imr$IMR11b, na.rm = TRUE )
# E[ e0 | y1* > 0 & y2* <= 0 ]
mean( myData$e0[ myData$y1 & !myData$y2 ] )
mean( sigma[1,2] * imr$IMR10a + sigma[1,3] * imr$IMR10b, na.rm = TRUE )
# E[ e0 | y1* <= 0 & y2* > 0 ]
mean( myData$e0[ !myData$y1 & myData$y2 ] )
mean( sigma[1,2] * imr$IMR01a + sigma[1,3] * imr$IMR01b, na.rm = TRUE )
# E[ e0 | y1* <= 0 & y2* <= 0 ]
mean( myData$e0[ !myData$y1 & !myData$y2 ] )
mean( sigma[1,2] * imr$IMR00a + sigma[1,3] * imr$IMR00b, na.rm = TRUE )
# E[ e0 | y1* > 0 ]
mean( myData$e0[ myData$y1 ] )
mean( sigma[1,2] * imr$IMR1X, na.rm = TRUE )
# E[ e0 | y1* <= 0 ]
mean( myData$e0[ !myData$y1 ] )
mean( sigma[1,2] * imr$IMR0X, na.rm = TRUE )
# E[ e0 | y2* > 0 ]
mean( myData$e0[ myData$y2 ] )
mean( sigma[1,3] * imr$IMRX1, na.rm = TRUE )
# E[ e0 | y2* <= 0 ]
mean( myData$e0[ !myData$y2 ] )
mean( sigma[1,3] * imr$IMRX0, na.rm = TRUE )
# estimation for y1* > 0 and y2* > 0
selection <- myData$y1 & myData$y2
# OLS estimation
ols11 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols11 )
# heckman type estimation
heckit11 <- lm( y0 ~ x1 + IMR11a + IMR11b, data = cbind( myData, imr ),
subset = selection )
summary( heckit11 )
# estimation for y1* > 0 and y2* <= 0
selection <- myData$y1 & !myData$y2
# OLS estimation
ols10 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols10 )
# heckman type estimation
heckit10 <- lm( y0 ~ x1 + IMR10a + IMR10b, data = cbind( myData, imr ),
subset = selection )
summary( heckit10 )
# estimation for y1* <= 0 and y2* > 0
selection <- !myData$y1 & myData$y2
# OLS estimation
ols01 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols01 )
# heckman type estimation
heckit01 <- lm( y0 ~ x1 + IMR01a + IMR01b, data = cbind( myData, imr ),
subset = selection )
summary( heckit01 )
# estimation for y1* <= 0 and y2* <= 0
selection <- !myData$y1 & !myData$y2
# OLS estimation
ols00 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols00 )
# heckman type estimation
heckit00 <- lm( y0 ~ x1 + IMR00a + IMR00b, data = cbind( myData, imr ),
subset = selection )
summary( heckit00 )
# estimation for y1* > 0
selection <- myData$y1
# OLS estimation
ols1X <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols1X )
# heckman type estimation
heckit1X <- lm( y0 ~ x1 + IMR1X, data = cbind( myData, imr ),
subset = selection )
summary( heckit1X )
# estimation for y1* <= 0
selection <- !myData$y1
# OLS estimation
ols0X <- lm( y0 ~ x1, data = myData, subset = selection )
summary( ols0X )
# heckman type estimation
heckit0X <- lm( y0 ~ x1 + IMR0X, data = cbind( myData, imr ),
subset = selection )
summary( heckit0X )
# estimation for y2* > 0
selection <- myData$y2
# OLS estimation
olsX1 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( olsX1 )
# heckman type estimation
heckitX1 <- lm( y0 ~ x1 + IMRX1, data = cbind( myData, imr ),
subset = selection )
summary( heckitX1 )
# estimation for y2* <= 0
selection <- !myData$y2
# OLS estimation
olsX0 <- lm( y0 ~ x1, data = myData, subset = selection )
summary( olsX0 )
# heckman type estimation
heckitX0 <- lm( y0 ~ x1 + IMRX0, data = cbind( myData, imr ),
subset = selection )
summary( heckitX0 )
# }
Run the code above in your browser using DataLab