# NOT RUN {
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, cve=0.05, me=0.03)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, cve=0.05, me=0.03, plot=TRUE)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, DEFF=3.45, conf=0.99,
cve=0.03, me=0.03, plot=TRUE)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, DEFF=3.45, conf=0.99,
cve=0.03, me=0.03, T = 0.5, R = 0.9, plot=TRUE)
#################################
# Example with BigLucyT0T1 data #
#################################
data(BigLucyT0T1)
attach(BigLucyT0T1)
BigLucyT0 <- BigLucyT0T1[Time == 0,]
BigLucyT1 <- BigLucyT0T1[Time == 1,]
N1 <- table(BigLucyT0$SPAM)[1]
N2 <- table(BigLucyT1$SPAM)[1]
N <- max(N1,N2)
P1 <- prop.table(table(BigLucyT0$ISO))[1]
P2 <- prop.table(table(BigLucyT1$ISO))[1]
P3 <- prop.table(table(BigLucyT0$ISO))[2]
P4 <- prop.table(table(BigLucyT1$ISO))[2]
# The minimum sample size for simple random sampling
ss4ddp(N, P1, P2, P3, P4, conf=0.95, cve=0.05, me=0.03, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4ddp(N, P1, P2, P3, P4, T = 0.5, R = 0.5, conf=0.95, cve=0.05, me=0.03, plot=TRUE)
# }
Run the code above in your browser using DataLab