# NOT RUN {
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=3)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=1, plot=TRUE)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=0.5, DEFF = 2, plot=TRUE)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=0.5, DEFF = 2, conf = 0.99,
power = 0.9, plot=TRUE)
#############################
# Example with BigLucy data #
#############################
data(BigLucy)
attach(BigLucy)
N1 <- table(SPAM)[1]
N2 <- table(SPAM)[2]
N <- max(N1,N2)
BigLucy.yes <- subset(BigLucy, SPAM == 'yes')
BigLucy.no <- subset(BigLucy, SPAM == 'no')
mu1 <- mean(BigLucy.yes$Income)
mu2 <- mean(BigLucy.no$Income)
sigma1 <- sd(BigLucy.yes$Income)
sigma2 <- sd(BigLucy.no$Income)
# The minimum sample size for testing
# H_0: mu_1 - mu_2 = 0 vs. H_a: mu_1 - mu_2 = D = 3
D = 3
ss4dmH(N, mu1, mu2, sigma1, sigma2, D, DEFF = 2, plot=TRUE)
# The minimum sample size for testing
# H_0: mu_1 - mu_2 = 0 vs. H_a: mu_1 - mu_2 = D = 3
D = 3
ss4dmH(N, mu1, mu2, sigma1, sigma2, D, conf = 0.99, power = 0.9, DEFF = 3.45, plot=TRUE)
# }
Run the code above in your browser using DataLab