# NOT RUN {
############
## Example 1
############
# matrix of sample calibration variables
Xs=cbind(
c(1,1,1,1,1,0,0,0,0,0),
c(0,0,0,0,0,1,1,1,1,1),
c(1,2,3,4,5,6,7,8,9,10))
# inclusion probabilities
piks=rep(0.2,times=10)
# vector of population totals
total=c(24,26,290)
# matrix of instrumental variables
Zs=Xs+matrix(runif(nrow(Xs)*ncol(Xs)),nrow(Xs),ncol(Xs))
# the g-weights using the truncated method
g=gencalib(Xs,Zs,d=1/piks,total,method="truncated",bounds=c(0.5,1.5))
# the calibration estimator of X is equal to the 'total' vector
t(g/piks)%*%Xs
# the g-weights are between lower and upper bounds
summary(g)
############
## Example 2
############
# Example of generalized g-weights (linear, raking, truncated, logit),
# with the data of Belgian municipalities as population.
# Firstly, a sample is selected by means of Poisson sampling.
# Secondly, the g-weights are calculated.
data(belgianmunicipalities)
attach(belgianmunicipalities)
# matrix of calibration variables for the population
X=cbind(Totaltaxation/mean(Totaltaxation),medianincome/mean(medianincome))
# selection of a sample with expected size equal to 200
# by means of Poisson sampling
# the inclusion probabilities are proportional to the average income
pik=inclusionprobabilities(averageincome,200)
N=length(pik) # population size
s=UPpoisson(pik) # sample
Xs=X[s==1,] # sample calibration variable matrix
piks=pik[s==1] # sample inclusion probabilities
n=length(piks) # sample size
# vector of population totals of the calibration variables
total=c(t(rep(1,times=N))%*%X)
# the population total
total
Z=cbind(TaxableIncome/mean(TaxableIncome),averageincome/mean(averageincome))
# defines the instrumental variables
Zs=Z[s==1,]
# computation of the generalized g-weights
# by means of different generalized calibration methods
g1=gencalib(Xs,Zs,d=1/piks,total,method="linear")
g2=gencalib(Xs,Zs,d=1/piks,total,method="raking")
g3=gencalib(Xs,Zs,d=1/piks,total,method="truncated",bounds=c(0.5,8))
g4=gencalib(Xs,Zs,d=1/piks,total,method="logit",bounds=c(0.5,1.5))
# In some cases, the calibration does not exist
# particularly when bounds are used.
# if the calibration is possible, the calibration estimator of X total is printed
if(checkcalibration(Xs,d=1/piks,total,g1)$result) print(c((g1/piks)%*% Xs)) else print("error")
if(!is.null(g2))
if(checkcalibration(Xs,d=1/piks,total,g2)$result) print(c((g2/piks)%*% Xs)) else print("error")
if(!is.null(g3))
if(checkcalibration(Xs,d=1/piks,total,g3)$result) print(c((g3/piks)%*% Xs)) else print("error")
if(!is.null(g4))
if(checkcalibration(Xs,d=1/piks,total,g4)$result) print(c((g4/piks)%*% Xs)) else print("error")
############
## Example 3
############
# Generalized calibration and adjustment for unit nonresponse in the 'calibration' vignette
# vignette("calibration", package="sampling")
# }
Run the code above in your browser using DataLab