Learn R Programming

samr (version 3.0)

samr.estimate.depth: estimate the sequencing depth

Description

Estimate the sequencing depth of each experiment for sequencing data.

Usage

samr.estimate.depth(x)

Arguments

x

the original count matrix. p by n matrix of features, one observation per column.

Value

depth

sequencing depth of each experiment. a vector of length n.

Details

normalize the data matrix so that each number looks roughly like Gaussian distributed and each experiment has the same sequencing depth. To do this, we first use Anscombe transformation to stablize the variance and makes each number look like Gaussian, and then divide each experiment by the square root of the sequencing depth.

References

Tusher, V., Tibshirani, R. and Chu, G. (2001): Significance analysis of microarrays applied to the ionizing radiation response PNAS 2001 98: 5116-5121, (Apr 24). http://www-stat.stanford.edu/~tibs/SAM

Examples

Run this code
# NOT RUN {
set.seed(100)
mu <- matrix(100, 1000, 20)
mu[1:100, 11:20] <- 200
mu <- scale(mu, center=FALSE, scale=runif(20, 0.5, 1.5))
x <- matrix(rpois(length(mu), mu), 1000, 20)
y <- c(rep(1, 10), rep(2, 10))
data=list(x=x,y=y, geneid=as.character(1:nrow(x)),
genenames=paste("g",as.character(1:nrow(x)),sep=""))
depth <- samr.estimate.depth(data$x)
# }

Run the code above in your browser using DataLab