f1 = uptake ~ Type + Treatment # formula
x = ModelMatrix(f1, CO2) # Model matrix and relevant information
y = model.frame(f1, CO2)[, 1] # observation vector
nc = ncol(x$X) # number of columns of model matrix
XpY = crossprod(x$X, y)
aXpX = rbind(cbind(crossprod(x$X), XpY), cbind(t(XpY), crossprod(y)))
ag2 = G2SWEEP(aXpX, Augmented=TRUE)
b = ag2[1:nc, (nc + 1)] ; b # Beta hat
iXpX = ag2[1:nc, 1:nc] ; iXpX # g2 inverse of X'X
SSE = ag2[(nc + 1), (nc + 1)] ; SSE # Sum of Square Error
DFr = nrow(x$X) - attr(ag2, "rank") ; DFr # Degree of freedom for the residual
# Compare the below with the above
REG(f1, CO2)
aov1(f1, CO2)
Run the code above in your browser using DataLab