Learn R Programming

sasLM (version 0.6.0)

est: Estimate Linear Functions

Description

Estimates Linear Functions with a given GLM result.

Usage

est(L, X, rx, conf.level=0.95, adj="lsd")

Arguments

L

a matrix of linear contrast rows to be tested

X

a model (design) matrix from ModelMatrix

rx

a result of lfit function

conf.level

confidence level of confidence limit

adj

"lsd" or "tukey" to adjust p-value and confidence limit

Value

Estimate

point estimate of the input linear constrast

Lower CL

lower confidence limit

Upper CL

upper confidence limit

Std. Error

standard error of the point estimate

t value

value for t distribution

Df

degree of freedom

Pr(>|t|)

probability of larger than absolute t value from t distribution with residual's degree of freedom

Details

It tests rows of linear function. Linear function means linear combination of estimated coefficients. It corresponds to SAS PROC GLM ESTIMATE. Same sample size per group is assumed for the Tukey adjustment.

See Also

ESTM

Examples

Run this code
# NOT RUN {
  x = ModelMatrix(uptake ~ Type, CO2)
  rx = REG(uptake ~ Type, CO2, summarize=FALSE)
  est(t(c(0, -1, 1)), x$X, rx) # Quevec - Mississippi 
  t.test(uptake ~ Type, CO2) # compare with the above
# }

Run the code above in your browser using DataLab