sbgcop-package: Semiparametric Bayesian Gaussian Copula Estimation and Imputation
Description
Estimation and inference for parameters in a Gaussian copula model, treating
univariate marginal distributions as nuisance parameters as described in
Hoff (2007) <doi:10.1214/07-AOAS107>. This pacakge also provides a
semiparametric imputation procedure for
missing multivariate data.
Arguments
Details
Package:
sbgcop
Type:
Package
Version:
0.980
Date:
2018-05-25
License:
GPL Version 2 or later
This function produces MCMC samples from the posterior distribution of a
correlation matrix, using a scaled inverse-Wishart prior distribution and an
extended rank likelihood. It also provides imputation for missing values in
a multivariate dataset.
References
Hoff (2007) ``Extending the rank likelihood for semiparametric
copula estimation''