# NOT RUN {
library(scTenifoldNet)
# Simulating of a dataset following a negative binomial distribution with high sparcity (~67%)
nCells = 2000
nGenes = 100
set.seed(1)
X <- rnbinom(n = nGenes * nCells, size = 20, prob = 0.98)
X <- round(X)
X <- matrix(X, ncol = nCells)
rownames(X) <- c(paste0('ng', 1:90), paste0('mt-', 1:10))
# Performing Single cell quality control
qcOutput <- scQC(
X = X,
minLibSize = 30,
removeOutlierCells = TRUE,
minPCT = 0.05,
maxMTratio = 0.1
)
# Computing a single-cell gene regulatory network using principal component regression
# Non-symmetric
pcnetOutput <- pcNet(X = qcOutput, nComp = 3, scaleScores = TRUE, symmetric = FALSE, q = 0)
pcnetOutput[1:10,1:10]
# Symmetric
pcnetOutput <- pcNet(X = qcOutput, nComp = 3, scaleScores = TRUE, symmetric = TRUE, q = 0)
pcnetOutput[1:5,1:5]
# }
Run the code above in your browser using DataLab