# NOT RUN {
 
##  SCOP-splines example with positivity constraint... 
  ## simulating data...
# }
# NOT RUN {
   set.seed(3)
   n <- 100
   x <- seq(-3,3,length.out=100)
   f <- dnorm(x) 
   y <- f + rnorm(n)*0.1  
   b <- scam(y~s(x,bs="po")-1)
  
   b1 <- scam(y~s(x)) ## unconstrained model
   plot(x,y)
   lines(x,f)
   lines(x,fitted(b),col=2)
   lines(x,fitted(b1),col=3)
  ## two-term example...
  set.seed(8)
  n <- 200
  x1 <- seq(-3,3,length.out=n)
  f1 <- 3*exp(-x1^2) ## positively constrained smooth
  x2 <- runif(n)*3-1;
  f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth 
  f <- f1+f2
  y <- f+rnorm(n)*0.3
  dat <- data.frame(x1=x1,x2=x2,y=y)
  ## fit model, results, and plot...
  b2 <- scam(y~s(x1,bs="po")+s(x2,k=15,bs="mpi")-1,data=dat)
  summary(b2)
  plot(b2,pages=1)
  b3 <- scam(y~s(x1,bs="ps")+s(x2,bs="ps"),data=dat) ## unconstrained model
  summary(b3)
  plot(b3,pages=1) 
 
# }
Run the code above in your browser using DataLab