# NOT RUN {
# }
# NOT RUN {
## tensor product `tesmi2' example
## simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n))
x2 <- sort(runif(n)*4-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
{ f1[i,j] <- 2*sin(pi*x1[i]) +exp(4*x2[j])/(1+exp(4*x2[j]))}
f1 <- as.vector(t(f1))
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tesmi2",m=2),
family=gaussian(link="identity"), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE, theta = 50, phi = 20)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b,theta=50,phi=20)
# }
Run the code above in your browser using DataLab