The mplm()
function computes a multivariate piecewise regression model.
mplm(
data,
dvar,
mvar,
pvar,
model = c("W", "H-M", "B&L-B", "JW"),
contrast = c("first", "preceding"),
contrast_level = c(NA, "first", "preceding"),
contrast_slope = c(NA, "first", "preceding"),
trend = TRUE,
level = TRUE,
slope = TRUE,
formula = NULL,
update = NULL,
na.action = na.omit,
...
)# S3 method for sc_mplm
print(x, digits = "auto", std = FALSE, ...)
model | Character string from function call (see arguments above). |
contrast | List with contrast definitions. |
full.model | Full regression model list. |
formula | Formula of the mplm model. |
A single-case data frame. See scdf()
to learn about this
format.
Character string with the name of the dependent variable. Defaults to the attributes in the scdf file.
Character string with the name of the measurement time variable. Defaults to the attributes in the scdf file.
Character string with the name of the phase variable. Defaults to the attributes in the scdf file.
Model used for calculating the dummy parameters (see Huitema &
McKean, 2000). Default is model = "W"
. Possible values are: "B&L-B"
,
"H-M"
, "W"
, and deprecated "JW"
.
Sets contrast_level and contrast_slope. Either "first", "preceding" or a contrast matrix.
Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.
Either "first", "preceding" or a contrast matrix. If NA contrast_level is a copy of contrast.
A logical indicating if a trend parameters is included in the model.
A logical indicating if a level parameters is included in the model.
A logical indicating if a slope parameters is included in the model.
Defaults to the standard piecewise regression model. The
parameter phase followed by the phase name (e.g., phaseB
) indicates the
level effect of the corresponding phase. The parameter 'inter' followed by
the phase name (e.g., interB
) adresses the slope effect based on the
method provide in the model argument (e.g., "B&L-B"
). The formula can be
changed for example to include further variables into the regression model.
An easier way to change the regression formula (e.g., . ~ . + newvariable
).
Defines how to deal with missing values.
Further arguments passed to the lm()
function.
Object returned from mplm()
.
The minimum number of significant digits to be use. If set to "auto" (default), values are predefined.
If TRUE, a table with standardized estimates is included.
print(sc_mplm)
: Print results
Juergen Wilbert
Other regression functions:
autocorr()
,
bplm()
,
corrected_tau()
,
hplm()
,
plm()
,
trend()
res <- mplm(Leidig2018$`1a1`,
dvar = c("academic_engagement", "disruptive_behavior")
)
print(res)
## also report standardized coefficients:
print(res, std = TRUE)
Run the code above in your browser using DataLab