Learn R Programming

scan (version 0.64.0)

pet: Percent exceeding the trend

Description

The pet function returns the percentage of Phase B data points that exceed the prediction based on the Phase A trend. A binomial test against a 50/50 distribution is calculated. It also calculates the percentage of Phase B data points that exceed the upper (or lower) 95 percent confidence interval of the predicted progression.

Usage

pet(data, dvar, pvar, mvar, ci = 0.95, decreasing = FALSE, phases = c(1, 2))

Value

PETPercent exceeding the trend.
ciWidth of confidence interval.
decreasingLogical argument from function call (see Arguments above).

Arguments

data

A single-case data frame. See scdf() to learn about this format.

dvar

Character string with the name of the dependent variable. Defaults to the attributes in the scdf file.

pvar

Character string with the name of the phase variable. Defaults to the attributes in the scdf file.

mvar

Character string with the name of the measurement time variable. Defaults to the attributes in the scdf file.

ci

Width of the confidence interval. Default is ci = 0.95.

decreasing

If you expect data to be lower in the B phase, set decreasing = TRUE. Default is decreasing = FALSE.

phases

A vector of two characters or numbers indicating the two phases that should be compared. E.g., phases = c("A","C") or phases = c(2,4) for comparing the second to the fourth phase. Phases could be combined by providing a list with two elements. E.g., phases = list(A = c(1,3), B = c(2,4)) will compare phases 1 and 3 (as A) against 2 and 4 (as B). Default is phases = c(1,2).

Author

Juergen Wilbert

See Also

Other overlap functions: cdc(), ird(), nap(), overlap(), pand(), pem(), pnd(), tau_u()

Examples

Run this code

## Calculate the PET and use a 99%-CI for the additional calculation
# create random example data
design <- design(n = 5, slope = 0.2)
dat <- random_scdf(design, seed = 23)
pet(dat, ci = .99)

Run the code above in your browser using DataLab