## Compute a piecewise regression model for a random single-case
set.seed(123)
AB <- design(
phase_design = list(A = 10, B = 20),
level = list(A = 0, B = 1), slope = list(A = 0, B = 0.05),
trend = 0.05
)
dat <- random_scdf(design = AB)
plm(dat, AR = 3)
## Another example with a more complex design
A1B1A2B2 <- design(
phase_design = list(A1 = 15, B1 = 20, A2 = 15, B2 = 20),
level = list(A1 = 0, B1 = 1, A2 = -1, B2 = 1),
slope = list(A1 = 0, B1 = 0.0, A2 = 0, B2 = 0.0),
trend = 0.0)
dat <- random_scdf(design = A1B1A2B2, seed = 123)
plm(dat, contrast = "preceding")
## no slope effects were found. Therefore, you might want to the drop slope
## estimation:
plm(dat, slope = FALSE, contrast = "preceding")
## and now drop the trend estimation as well
plm(dat, slope = FALSE, trend = FALSE, contrast = "preceding")
## A poisson regression
example_A24 |>
plm(family = "poisson")
## A binomial regression (frequencies as dependent variable)
plm(exampleAB_score$Christiano, family = "binomial", var_trials = "trials")
## A binomial regression (percentage as dependent variable)
exampleAB_score$Christiano |>
transform(percentage = values/trials) |>
set_dvar("percentage") |>
plm(family = "binomial", var_trials = "trials", dvar_percentage = TRUE)
Run the code above in your browser using DataLab