## Exploring candidate sigmas:
getSigmaI(x.cod) # sigma used in assessment 0.20
estSigmaI(x.cod) # model fit implies 0.17
plotIndex(x.cod) # model fit
estSigmaI(x.cod, p=8) # eight estimated parameters implies 0.22
getSigmaI(x.sbw) # sigma used in assessment
estSigmaI(x.sbw) # model fit implies smaller sigma
estSigmaI(x.sbw, init=1) # could use 0.17 in all years
## Same mean, regardless of init:
mean(estSigmaI(x.sbw, digits=NULL))
mean(estSigmaI(x.sbw, digits=NULL, init=1))
## Same median, regardless of init:
median(estSigmaI(x.sbw, FUN=median, digits=NULL))
median(estSigmaI(x.sbw, FUN=median, digits=NULL, init=1))
## Multiple series:
getSigmaI(x.oreo, "c") # sigma used in assessment
getSigmaI(x.oreo, "c", digits=2) # rounded
estSigmaI(x.oreo, "c") # model fit implies smaller sigma
estSigmaI(x.oreo, "c", init=1) # could use 0.19 in all years
estSigmaI(x.oreo, "c", init=1, digits=3) # series 2 slightly worse fit
# estSigmaI(x.oreo, "c", init=1, p=11) # more parameters than datapoints
getSigmaI(x.oreo, "c", series="Series 2-1") # get one series
estSigmaI(x.oreo, "c", series="Series 2-1") # estimate one series
Run the code above in your browser using DataLab