Learn R Programming

scater (version 1.0.4)

isOutlier: Identify if a cell is an outlier based on a metric

Description

Convenience function to determine which values for a metric are outliers based on median-absolute-deviation (MAD).

Usage

isOutlier(metric, nmads = 5, type = c("both", "lower", "higher"), log = FALSE)

Arguments

metric
numeric or integer vector of values for a metric
nmads
scalar, number of median-absolute-deviations away from median required for a value to be called an outlier
type
character scalar, choice indicate whether outliers should be looked for at both tails (default: "both") or only at the lower end ("lower") or the higher end ("higher")
log
logical, should the values of the metric be transformed to the log10 scale before computing median-absolute-deviation for outlier detection?

Value

a logical vector of the same length as the metric argument

Examples

Run this code
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data=sc_example_cell_info)
rownames(pd) <- pd$Cell
example_sceset <- newSCESet(countData=sc_example_counts, phenoData=pd)
example_sceset <- calculateQCMetrics(example_sceset)

## with a set of feature controls defined
example_sceset <- calculateQCMetrics(example_sceset, feature_controls = 1:40)
isOutlier(example_sceset$total_counts, nmads = 3)

Run the code above in your browser using DataLab