newSCESet(exprsData = NULL, countData = NULL, tpmData = NULL, fpkmData = NULL, cpmData = NULL, phenoData = NULL, featureData = NULL, experimentData = NULL, is_exprsData = NULL, lowerDetectionLimit = 0, logExprsOffset = 1, logged = FALSE, useForExprs = "exprs")"numeric" containing
transcripts-per-million (TPM) expression values"numeric" containing fragments per
kilobase of exon per million reads mapped (FPKM) expression values"numeric" containing counts per
million (CPM) expression values (optional)"logical", indicating whether
or not each observation is above the lowerDetectionLimit.1.log2(tpm + 1) values in the 'exprs' slot. However, expression
values could also be values from a single cell qPCR run or some other type of
 assay. The newSCESet function can also accept raw count values. In this case
 see calculateTPM and calculateFPKM for computing
 TPM and FPKM expression values, respectively, from counts. The function
 cpm from the package edgeR to can be used to compute
 log2(counts-per-million), if desired. An SCESet object has to have the 'exprs' slot defined, so if
 the exprsData argument is NULL, then this function will define
 'exprs' with the following order of precedence: log2(TPM + 
 logExprsOffset), if tpmData is defined; log2(FPKM + logExprsOffset) 
 if fpkmData is defined; otherwise log2(counts-per-million + 
 logExprsOffset) are used. The cpm function from the 
 edgeR package is used to compte cpm. Note that for many analyses 
 counts-per-million are not recommended, and if possible 
 transcripts-per-million should be used.
 In many downstream functions you will likely find it most convenient if the
 'exprs' values are on the log2-scale, so this is recommended.
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
example_sceset
Run the code above in your browser using DataLab