newSCESet(exprsData = NULL, countData = NULL, tpmData = NULL, fpkmData = NULL, cpmData = NULL, phenoData = NULL, featureData = NULL, experimentData = NULL, is_exprsData = NULL, lowerDetectionLimit = 0, logExprsOffset = 1, logged = FALSE, useForExprs = "exprs")
"numeric"
containing
transcripts-per-million (TPM) expression values"numeric"
containing fragments per
kilobase of exon per million reads mapped (FPKM) expression values"numeric"
containing counts per
million (CPM) expression values (optional)"logical"
, indicating whether
or not each observation is above the lowerDetectionLimit
.1
.log2(tpm + 1)
values in the 'exprs' slot. However, expression
values could also be values from a single cell qPCR run or some other type of
assay. The newSCESet function can also accept raw count values. In this case
see calculateTPM
and calculateFPKM
for computing
TPM and FPKM expression values, respectively, from counts. The function
cpm
from the package edgeR to can be used to compute
log2(counts-per-million), if desired. An SCESet
object has to have the 'exprs'
slot defined, so if
the exprsData
argument is NULL
, then this function will define
'exprs'
with the following order of precedence: log2(TPM +
logExprsOffset), if tpmData
is defined; log2(FPKM + logExprsOffset)
if fpkmData
is defined; otherwise log2(counts-per-million +
logExprsOffset) are used. The cpm
function from the
edgeR package is used to compte cpm
. Note that for many analyses
counts-per-million are not recommended, and if possible
transcripts-per-million should be used.
In many downstream functions you will likely find it most convenient if the
'exprs'
values are on the log2-scale, so this is recommended.
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
example_sceset
Run the code above in your browser using DataLab