Learn R Programming

scater (version 1.0.4)

plotHighestExprs: Plot the features with the highest expression values

Description

Plot the features with the highest expression values

Usage

plotHighestExprs(object, col_by_variable = "total_features", n = 50, drop_features = NULL, exprs_values = "counts")

Arguments

object
an SCESet object containing expression values and experimental information. Must have been appropriately prepared.
col_by_variable
variable name (must be a column name of pData(object)) to be used to assign colours to cell-level values.
n
numeric scalar giving the number of the most expressed features to show. Default value is 50.
drop_features
a character, logical or numeric vector indicating which features (e.g. genes, transcripts) to drop when producing the plot. For example, control genes might be dropped to focus attention on contribution from endogenous rather than synthetic genes.
exprs_values
which slot of the assayData in the object should be used to define expression? Valid options are "counts" (default), "tpm", "fpkm" and "exprs".

Value

a ggplot plot object

Details

Plot the percentage of counts accounted for by the top n most highly expressed features across the dataset.

Examples

Run this code
data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
rownames(pd) <- pd$Cell
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
example_sceset <- calculateQCMetrics(example_sceset, feature_controls = 1:500)
plotHighestExprs(example_sceset, col_by_variable="total_features")
plotHighestExprs(example_sceset, col_by_variable="Mutation_Status")

Run the code above in your browser using DataLab