Learn R Programming

scater (version 1.0.4)

runKallisto: Run kallisto on FASTQ files to quantify feature abundance

Description

Run the abundance quantification tool kallisto on a set of FASTQ files. Requires kallisto (http://pachterlab.github.io/kallisto/) to be installed and a kallisto feature index must have been generated prior to using this function. See the kallisto website for installation and basic usage instructions.

Usage

runKallisto(targets_file, transcript_index, single_end = TRUE, output_prefix = "output", fragment_length = NULL, fragment_standard_deviation = NULL, n_cores = 2, n_bootstrap_samples = 0, bootstrap_seed = NULL, correct_bias = TRUE, plaintext = FALSE, kallisto_version = "current", verbose = TRUE, dry_run = FALSE, kallisto_cmd = "kallisto")

Arguments

targets_file
character string giving the path to a tab-delimited text file with either 2 columns (single-end reads) or 3 columns (paired-end reads) that gives the sample names (first column) and FastQ file names (column 2 and if applicable 3). The file is assumed to have column headers, although these are not used.
transcript_index
character string giving the path to the kallisto index to be used for the feature abundance quantification.
single_end
logical, are single-end reads used, or paired-end reads?
output_prefix
character string giving the prefix for the output folder that will contain the kallisto results. The default is "output" and the sample name (column 1 of targets_file) is appended (preceded by an underscore).
fragment_length
scalar integer or numeric giving the estimated average fragment length. Required argument if single_end is TRUE, optional if FALSE (kallisto default for paired-end data is that the value is estimated from the input data).
fragment_standard_deviation
scalar numeric giving the estimated standard deviation of read fragment length. Required argument if single_end is TRUE, optional if FALSE (kallisto default for paired-end data is that the value is estimated from the input data).
n_cores
integer giving the number of cores (nodes/threads) to use for the kallisto jobs. The package parallel is used. Default is 2 cores.
n_bootstrap_samples
integer giving the number of bootstrap samples that kallisto should use (default is 0). With bootstrap samples, uncertainty in abundance can be quantified.
bootstrap_seed
scalar integer or numeric giving the seed to use for the bootstrap sampling (default used by kallisto is 42). Optional argument.
correct_bias
logical, should kallisto's option to model and correct abundances for sequence specific bias? Requires kallisto version 0.42.2 or higher.
plaintext
logical, if TRUE then bootstrapping results are returned in a plain text file rather than an HDF5 https://www.hdfgroup.org/HDF5/ file.
kallisto_version
character string indicating whether or not the version of kallisto to be used is "pre-0.42.2" or "current". This is required because the kallisto developers changed the output file extensions and added features in version 0.42.2.
verbose
logical, should timings for the run be printed?
dry_run
logical, if TRUE then a list containing the kallisto commands that would be run and the output directories is returned. Can be used to read in results if kallisto is run outside an R session or to produce a script to run outside of an R session.
kallisto_cmd
(optional) string giving full command to use fo call kallisto, if simply typing "kallisto" at the command line does not give the required version of kallisto or does not work. Default is simply "kalliso". If used, this argument should give the full path to the desired kallisto binary.

Value

A list containing three elements for each sample for which feature abundance has been quantified: (1) kallisto_call, the call used for kallisto, (2) kallisto_log the log generated by kallisto, and (3) output_dir the directory in which the kallisto results can be found.

Details

A kallisto transcript index can be built from a FASTA file: kallisto index [arguments] FASTA-file. See the kallisto documentation for further details.

Examples

Run this code
## Not run: 
# ## If in kallisto's 'test' directory, then try these calls:
# ## Generate 'targets.txt' file:
# write.table(data.frame(Sample="sample1", File1="reads_1.fastq.gz", File2="reads_1.fastq.gz"),
#  file="targets.txt", quote=FALSE, row.names=FALSE, sep="\t")
# kallisto_log <- runKallisto("targets.txt", "transcripts.idx", single_end=FALSE,
#          output_prefix="output", verbose=TRUE, n_bootstrap_samples=10,
#          dry_run = FALSE)
# ## End(Not run)

Run the code above in your browser using DataLab