powered by
Estimate labeling distribution for each vertex, based on provided labels using a Random Walk on graph
propagateLabelsDiffusion( graph, labels, max.iters = 100, diffusion.fading = 10, diffusion.fading.const = 0.1, tol = 0.025, fixed.initial.labels = TRUE, verbose = TRUE )
matrix from input graph, with labels propagated
igraph graph object Graph input
vector of factor or character labels, named by cell names
integer Maximal number of iterations (default=100)
numeric Constant used for diffusion on the graph, exp(-diffusion.fading * (edge_length + diffusion.fading.const)) (default=10.0)
numeric Another constant used for diffusion on the graph, exp(-diffusion.fading * (edge_length + diffusion.fading.const)) (default=0.1)
numeric Absolute tolerance as a stopping criteria (default=0.025)
boolean Prohibit changes of initial labels during diffusion (default=TRUE)
boolean Verbose mode (default=TRUE)
propagateLabelsDiffusion(conosGraph, labels=cellAnnotations)
Run the code above in your browser using DataLab