Learn R Programming

schwartz97 (version 0.0.6)

schwartz97-internal: Internal Schwartz97 Functions

Description

Internal “Schwartz97” functions. These functions are not to be called by the user.

Usage

.clean.rda.data(tmp.list, idx = 1:6)
.get.data(data, type = c("uv", "mv"))
.mu.state.schwartz2f(x0, delta0, mu, sigmaS, kappa, alpha, sigmaE, rho, time, as.mat = FALSE)
.sigma.state.schwartz2f(sigmaS, kappa, sigmaE, rho, time)
.A.schwartz2f(kappa, sigmaS, sigmaE, rho, alphaT, r, ttm)
.B.schwartz2f(kappa, ttm)
.mu.fut.schwartz2f(x0, delta0, mu, sigmaS, kappa, sigmaE, rho, alpha, alphaT, r, time, ttm, measure = "P")
.sigma.fut.schwartz2f(sigmaS, kappa, sigmaE, rho, time, ttm)
.sigma.opt.schwartz2f(time, Time, kappa, sigmaS, sigmaE, rho)
.sim.futures(time, dt, ttm = NA, obj = schwartz2f(), r = 0.03, lambda = 0, sd = 0.01)

Arguments

Details

.clean.rda.data Removes NAs from the internal futures data sets. This is needed in order to fit parameters to the data.

.get.data Check whether data is of a particular format and return a clean version of data.

.mu.state.schwartz2f Computes the mean vector of the jointly normally distributed state variables of the Schwartz two-factor model. The state variables are the spot log-price and the spot convenience yield.

.sigma.state.schwartz2f Computes the covariance matrix of the jointly normally distributed state variables of the Schwartz two-factor model. The state variables are the spot log-price and the spot convenience yield.

.A.schwartz2f Computes the deterministic component A(t,T) of the affine futures term-structure.

.B.schwartz2f Computes the deterministic component B(t,T) of the affine futures term-structure.

.mu.fut.schwartz2f Computes the parameter mu of the futures price log-normal distribution.

.sigma.fut.schwartz2f Computes the parameter sigma of the futures price log-normal distribution.

.sigma.opt.schwartz2f Computes the sigma for the options formula.

.sim.futures Simulate futures prices and overlay with noise. This function is used to test fit.schwartz2f.