# NOT RUN {
## Probability Forecast for Binary Target
binary_example <- data.table::setDT(scoringutils::binary_example_data)
eval <- scoringutils::eval_forecasts(binary_example,
by = c("id", "model", "horizon"),
summarise_by = c("model"),
quantiles = c(0.5), sd = TRUE)
eval <- scoringutils::eval_forecasts(binary_example,
by = c("id", "model", "horizon"))
## Quantile Forecasts
# wide format
quantile_example <- data.table::setDT(scoringutils::quantile_example_data_wide)
eval <- scoringutils::eval_forecasts(quantile_example,
by = c("model", "horizon", "id"),
summarise_by = "model",
quantiles = c(0.05, 0.95),
sd = TRUE)
eval <- scoringutils::eval_forecasts(quantile_example,
by = c("model", "horizon", "id"))
#long format
eval <- scoringutils::eval_forecasts(scoringutils::quantile_example_data_long,
by = c("model", "horizon", "id"),
summarise_by = c("model", "range"))
## Integer Forecasts
integer_example <- data.table::setDT(scoringutils::integer_example_data)
eval <- scoringutils::eval_forecasts(integer_example,
by = c("model", "id", "horizon"),
summarise_by = c("model"),
quantiles = c(0.1, 0.9),
sd = TRUE,
pit_plots = TRUE,
pit_arguments = list(n_replicates = 30,
plot = TRUE))
eval <- scoringutils::eval_forecasts(integer_example)
## Continuous Forecasts
continuous_example <- data.table::setDT(scoringutils::continuous_example_data)
eval <- scoringutils::eval_forecasts(continuous_example,
by = c("model", "id", "horizon"))
eval <- scoringutils::eval_forecasts(continuous_example,
quantiles = c(0.5, 0.9),
sd = TRUE,
summarise_by = c("model"))
# }
Run the code above in your browser using DataLab