Learn R Programming

scoringutils (version 1.2.2)

se_mean_sample: Squared Error of the Mean (Sample-based Version)

Description

Squared error of the mean calculated as

$$ \textrm{mean}(\textrm{true\_value} - \textrm{prediction})^2 $$

Usage

se_mean_sample(true_values, predictions)

Value

vector with the scoring values

Arguments

true_values

A vector with the true observed values of size n

predictions

nxN matrix of predictive samples, n (number of rows) being the number of data points and N (number of columns) the number of Monte Carlo samples. Alternatively, predictions can just be a vector of size n.

See Also

squared_error()

Examples

Run this code
true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
se_mean_sample(true_values, predicted_values)

Run the code above in your browser using DataLab