powered by
For sample-based forecasts, the default scoring rules are:
"crps" = crps_sample()
crps_sample()
"overprediction" = overprediction_sample()
overprediction_sample()
"underprediction" = underprediction_sample()
underprediction_sample()
"dispersion" = dispersion_sample()
dispersion_sample()
"log_score" = logs_sample()
logs_sample()
"dss" = dss_sample()
dss_sample()
"mad" = mad_sample()
mad_sample()
"bias" = bias_sample()
bias_sample()
"ae_median" = ae_median_sample()
ae_median_sample()
"se_mean" = se_mean_sample()
se_mean_sample()
# S3 method for forecast_sample get_metrics(x, select = NULL, exclude = NULL, ...)
A forecast object (a validated data.table with predicted and observed values, see as_forecast_binary()).
as_forecast_binary()
A character vector of scoring rules to select from the list. If select is NULL (the default), all possible scoring rules are returned.
select
NULL
A character vector of scoring rules to exclude from the list. If select is not NULL, this argument is ignored.
unused
Overview of required input format for sample-based forecasts
Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(), get_metrics.forecast_ordinal(), get_metrics.forecast_point(), get_metrics.forecast_quantile(), get_metrics.scores()
get_metrics()
get_metrics.forecast_binary()
get_metrics.forecast_nominal()
get_metrics.forecast_ordinal()
get_metrics.forecast_point()
get_metrics.forecast_quantile()
get_metrics.scores()
get_metrics(example_sample_continuous, exclude = "mad")
Run the code above in your browser using DataLab