rcCIR: Conditional law of the Cox-Ingersoll-Ross process
Description
Density, distribution function, quantile function and
random generation for the conditional law \(X(t+D_t) | X(t)=x_0\) of the Cox-Ingersoll-Ross
process.
parameter of the Ornstein-Uhlenbeck process; see details.
n
number of random numbers to generate from the conditional distribution.
log, log.p
logical; if TRUE, probabilities \(p\) are given as \(\log(p)\).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x];
otherwise P[X > x].
Author
Stefano Maria Iacus
Details
This function returns quantities related to the conditional law
of the process solution of
$${\rm d}X_t = (\theta_1-\theta_2 X_t){\rm d}t + \theta_3\sqrt{X_t}{\rm d}W_t.$$
Constraints: \(2\theta_1> \theta_3^2\), all \(\theta\) positive.
References
Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory
of the term structure of interest rates, Econometrica, 53, 385-408.