Internal sdwd functions.
cv.sdwdNET(outlist, lambda, x, y, foldid, pred.loss)
cvcompute(mat, foldid, nlams)
err(n, maxit, pmax)
error.bars(x, upper, lower, width=0.02, ...)
getmin(lambda, cvm, cvsd)
getoutput(fit, maxit, pmax, nvars, vnames)
lambda.interp(lambda, s)
lamfix(lam)
nonzero(beta, bystep=FALSE)
zeromat(nvars, nalam, vnames, stepnames)
These internal functions are not intended for use by users. coef.sdwdNET
computes the coefficient of the sdwd
object. cv.sdwdNET
does cross-validation for the sdwd
object. cvcompute
computes the mean and the standard deviation of the cross-validation error. err
obtains the error message from fortran code. error.bars
helps to plot the cross-validation error curve. getmin
addresses the best lambda through the cross-validation either using or not using the one-standard-deviation rule. getoutput
organizes the output of the sdwd
object. lambda.interp
conducts the linear interpolation of the lambdas values to obtain the coefficients at new lambda values. Note the obtained coefficients are not the exact values. lamfix
fixes the largest lambda value in the lambda sequence. nonzero
and zeromat
organize the nonzero coefficients. Most of the aforementioned functions are modified or directly copied from the gcdnet
and the glmnet
packages.
Wang, B. and Zou, H. (2016) ``Sparse Distance Weighted Discrimination", Journal of Computational and Graphical Statistics, 25(3), 826--838. https://www.tandfonline.com/doi/full/10.1080/10618600.2015.1049700
Yang, Y. and Zou, H. (2013) ``An Efficient Algorithm for Computing the HHSVM and Its Generalizations", Journal of Computational and Graphical Statistics, 22(2), 396--415. https://www.tandfonline.com/doi/full/10.1080/10618600.2012.680324
Friedman, J., Hastie, T., and Tibshirani, R. (2010), "Regularization paths for generalized linear models via coordinate descent," Journal of Statistical Software, 33(1), 1--22. https://www.jstatsoft.org/v33/i01/paper