if (FALSE) {
olddir <- setwd('d:/density communication/combining telemetry and secr/possums')
CvilleCH <- read.capthist('CVILLE summer captures 4occ.txt',
'CVILLE detectors summer 4occ.txt',
detector = 'single')
CvilleGPS <- read.telemetry('CVILLE GPS Combined 4occ.txt')
CvilleGPSnew <- read.telemetry('CVILLE summer GPS New occasions.txt')
setwd(olddir)
CvilleBoth <- addTelemetry(CvilleCH, CvilleGPSnew)
plot(CvilleBoth, border = 400)
PG(CvilleBoth, buffer = 100, convex = TRUE, plt = TRUE, add = TRUE,
col = 'red')
###################################################################
## this code computes an area-adjusted density estimate
## cf Grant and Doherty 2007
PGD <- function (CH, estimator = 'h2', ...) {
pg <- PG(CH, ...)
PGbar <- mean(pg)
N <- closedN(CH, estimator)
A <- polyarea(buffer.contour(traps(CH), ...)[[1]])
Dhat <- N$Nhat / A * PGbar
varDhat <- (N$Nhat^2 * var(pg) + PGbar^2 * N$seNhat^2) / A^2
c(Dhat = Dhat, seDhat = sqrt(varDhat))
}
plot(traps(CvilleBoth), border = 400)
PGD(CvilleBoth, buffer = 0, convex = TRUE, plt = TRUE, add = TRUE)
PGD(CvilleBoth, est='null', buffer = 0, convex = TRUE, plt = FALSE)
###################################################################
## this code generates a PG summary for telemetry records randomly
## translated and rotated, keeping the centres within a habitat mask
randomPG <- function(CH, poly = NULL, mask, reorient = TRUE, nrepl = 1,
seed = 12345, ...) {
moveone <- function(xy, newcentre) {
xy <- sweep(xy,2,apply(xy,2,mean))
if (reorient) ## random rotation about centre
xy <- rotate(xy, runif(1)*360)
sweep(xy,2,unlist(newcentre), "+")
}
onerepl <- function(r) { ## r is dummy for replicate
centres <- sim.popn(D = D, core = mask, model2D = "IHP",
Ndist = "fixed")
xyl <- mapply(moveone, xyl, split(centres, rownames(centres)))
attr(CH, 'xylist') <- xyl ## substitute random placement
PG(CH = CH , poly = poly, plt = FALSE, ...)
}
set.seed(seed)
if (!requireNamespace('sf')) stop ("requires package sf")
if (is.null(poly)) {
poly <- buffer.contour (traps(CH), ...)
poly <- lapply(poly, as.matrix)
poly <- sf::st_sfc(sf::st_polygon(poly))
}
xyl <- telemetryxy(CH)
D <- length(xyl) / maskarea(mask)
sapply(1:nrepl, onerepl)
}
mask <- make.mask (traps(CvilleBoth), buffer = 400, type = "trapbuffer")
pg <- randomPG (CvilleBoth, mask = mask, buffer = 100, convex = TRUE,
nrepl = 20)
apply(pg, 1, mean)
###################################################################
}
Run the code above in your browser using DataLab