# make a trapping grid with simple covariates
temptrap <- make.grid(nx = 6, ny = 8, detector = "multi")
covariates (temptrap) <- data.frame(matrix(
c(rep(1,48*3),rep(2,48*2)), ncol = 5))
head(covariates (temptrap))
# identify columns 1-5 as daily covariates
timevaryingcov(temptrap) <- list(blockt = 1:5)
timevaryingcov(temptrap)
if (FALSE) {
# default density = 5/ha, noccasions = 5
CH <- sim.capthist(temptrap, detectpar = list(g0 = c(0.15, 0.15,
0.15, 0.3, 0.3), sigma = 25))
fit.1 <- secr.fit(CH, trace = FALSE)
fit.tvc2 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)
# because variation aligns with occasions, we get the same with:
fit.t2 <- secr.fit(CH, model = g0 ~ tcov, timecov = c(1,1,1,2,2),
trace = FALSE)
predict(fit.t2, newdata = data.frame(tcov = 1:2))
predict(fit.tvc2, newdata = data.frame(blockt = 1:2))
# now model some more messy variation
covariates (traps(CH))[1:10,] <- 3
fit.tvc3 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)
AIC(fit.tvc2, fit.t2, fit.tvc3)
# fit.tvc3 is the 'wrong' model
}
Run the code above in your browser using DataLab