Learn R Programming

secr (version 4.6.10)

traps: Detector Array

Description

An object of class traps encapsulates a set of detector (trap) locations and related data. A method of the same name extracts or replaces the traps attribute of a capthist object.

Usage

traps(object, ...)
traps(object) <- value

Arguments

object

a capthist object.

value

traps object to replace previous.

...

other arguments (not used).

Details

An object of class traps holds detector (trap) locations as a data frame of x-y coordinates. Trap identifiers are used as row names. The required attribute `detector' records the type of detector ("single", "multi" or "proximity" etc.; see detector for more).

Other possible attributes of a traps object are:

spacingmean distance to nearest detector
spacex
spacey
covariatesdataframe of trap-specific covariates
clusterIDidentifier of the cluster to which each detector belongs
clustertrapsequence number of each trap within its cluster
usagea traps x occasions matrix of effort (may be binary 0/1)
markoccinteger vector distinguishing marking occasions (1) from sighting occasions (0)
newtrapvector recording aggregation of detectors by reduce.traps

If usage is specified, at least one detector must be `used' (usage non-zero) on each occasion.

Various array geometries may be constructed with functions such as make.grid and make.circle, and these may be combined or placed randomly with trap.builder.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture--recapture. Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.ac.nz/density/.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy (eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255--269.

See Also

make.grid, read.traps, rbind.traps, reduce.traps, plot.traps, secr.fit, spacing, detector, covariates, trap.builder, as.mask

Examples

Run this code

demotraps <- make.grid(nx = 8, ny = 6, spacing = 30)
demotraps    ## uses print method for traps
summary (demotraps)

plot (demotraps, border = 50, label = TRUE, offset = 8, 
    gridlines=FALSE)  

## generate an arbitrary covariate `randcov'
covariates (demotraps) <- data.frame(randcov = rnorm(48))

## overplot detectors that have high covariate values
temptr <- subset(demotraps, covariates(demotraps)$randcov > 0.5)
plot (temptr, add = TRUE, 
    detpar = list (pch = 16, col = "green", cex = 2))  

Run the code above in your browser using DataLab