Learn R Programming

secr (version 4.6.9)

Trend: Density Trend

Description

Functions for multi-session density trend analysis.

Usage

predictDlambda(object, alpha = 0.05)

Value

A table of session-specific estimates (initial D, subsequent \(\lambda[t]\)) with SE and confidence intervals.

Arguments

object

multi-session secr object output from secr.fit

alpha

alpha level for confidence intervals

Details

Usage is described in secr-trend.pdf. Briefly, setting details argument 'Dlambda' in `secr.fit causes the density model (D~xxx) to be interpreted as a session-specific trend model with parameters for the initial density (D1) and each subsequent session-on-session change in density \(\lambda[t] = D[t+1]/D[t]\).

See Also

predictDsurface, secr.fit

Examples

Run this code

# \donttest{
# a model with constant lambda
msk <- make.mask(traps(ovenCH[[1]]), buffer = 300, nx = 25)
fit <- secr.fit(ovenCH, model = D~1, mask = msk, trace = FALSE, 
                 details = list(Dlambda = TRUE), ncores = 2)
predictDlambda(fit)

# }

Run the code above in your browser using DataLab