
Compute profile likelihood confidence intervals for `beta' or `real' parameters of a spatially explicit capture-recapture model,
# S3 method for secr
confint (object, parm, level = 0.95, newdata = NULL,
tracelevel = 1, tol = 0.0001, bounds = NULL, ncores = NULL, ...)
A matrix with one row for each parameter in parm
, and columns
giving the lower (lcl) and upper (ucl) 100*level
secr
model object
numeric or character vector of parameters
confidence level (1 -- alpha)
optional dataframe of values at which to evaluate model
integer for level of detail in reporting (0,1,2)
absolute tolerance (passed to uniroot)
numeric vector of outer starting values -- optional
number of threads used for parallel processing
other arguments (not used)
If parm
is numeric its elements are interpreted as the indices of
`beta' parameters; character values are interpreted as `real'
parameters. Different methods are used for beta parameters and real
parameters. Limits for the
If bounds
is provided it should be a 2-vector or matrix of 2
columns and length(parm) rows.
Setting ncores = NULL
uses the existing value from the environment variable
RCPP_PARALLEL_NUM_THREADS (see setNumThreads
).
Evans, M. A., Kim, H.-M. and O'Brien, T. E. (1996) An application of profile-likelihood based confidence interval to capture--recapture estimators. Journal of Agricultural, Biological and Experimental Statistics 1, 131--140.
Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species. Journal of Agricultural, Biological and Experimental Statistics 12, 315--324.
Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based confidence intervals. Applied Statistics 37, 87--94.
if (FALSE) {
## Limits for the constant real parameter "D"
confint(secrdemo.0, "D")
}
Run the code above in your browser using DataLab