miPowerFit(lavaanObj, stdLoad=0.4, cor=0.1, stdBeta=0.1, intcept=0.2, stdDelta=NULL,
delta=NULL, cilevel = 0.90)
"M"
represents the parameter is misspecified, "NM"
represents the parameter is not misspecified, "EPC:M"
represents the parameter is misspecified decided by checking the expected parameter change value, "EPC:NM"
represents the parameter is not misspecified decided by checking the expected parameter change value, and "I"
represents the decision is inconclusive."M"
represents the parameter is misspecified, "NM"
represents the parameter is not misspecified, and "I"
represents the decision is inconclusive.inspect(object, "mi")
delta
, delta
) or (0, delta
) for nonnegative parameters. If the confidence intervals are outside of the range of trivial misspecification, the fixed parameters are severely misspecified. If the confidence intervals are inside the range of trivial misspecification, the fixed parameters are trivially misspecified. If confidence intervals are overlapped the range of trivial misspecification, the decision is inconclusive.moreFitIndices
For the additional fit indices informationlibrary(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939, group="sex", meanstructure=TRUE)
miPowerFit(fit)
model <- '
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
fit2 <- sem(model, data=PoliticalDemocracy, meanstructure=TRUE)
miPowerFit(fit2, stdLoad=0.3, cor=0.2, stdBeta=0.2, intcept=0.5)
Run the code above in your browser using DataLab