Learn R Programming

semTools (version 0.4-12)

standardizeMx: Find standardized estimates for OpenMx output

Description

Find standardized estimates for OpenMx output. This function is applicable for the MxRAMObjective only.

Usage

standardizeMx(object, free = TRUE)

Arguments

object
Target OpenMx output using MxRAMObjective
free
If TRUE, the function will show only standardized values of free parameters. If FALSE, the function will show the results for fixed and free parameters.

Value

A vector of standardized estimates

See Also

saturateMx, nullMx, fitMeasuresMx

Examples

Run this code
## Not run: 
# library(OpenMx)
# data(myFADataRaw)
# myFADataRaw <- myFADataRaw[,c("x1","x2","x3","x4","x5","x6")]
# oneFactorModel <- mxModel("Common Factor Model Path Specification", 
# 	type="RAM",
# 	mxData(
# 		observed=myFADataRaw, 
# 		type="raw"
# 	),
# 	manifestVars=c("x1","x2","x3","x4","x5","x6"),
# 	latentVars="F1",
# 	mxPath(from=c("x1","x2","x3","x4","x5","x6"),
# 		arrows=2,
# 		free=TRUE,
# 		values=c(1,1,1,1,1,1),
# 		labels=c("e1","e2","e3","e4","e5","e6")
# 	), 
# 	# residual variances
# 	# -------------------------------------
# 	mxPath(from="F1",
# 		arrows=2,
# 		free=TRUE,
# 		values=1,
# 		labels ="varF1"
# 	), 
# 	# latent variance
# 	# -------------------------------------
# 	mxPath(from="F1",
# 		to=c("x1","x2","x3","x4","x5","x6"),
# 		arrows=1,
# 		free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
# 		values=c(1,1,1,1,1,1),
# 		labels =c("l1","l2","l3","l4","l5","l6")
# 	), 
# 	# factor loadings
# 	# -------------------------------------
# 	mxPath(from="one",
# 		to=c("x1","x2","x3","x4","x5","x6","F1"),
# 		arrows=1,
# 		free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
# 		values=c(1,1,1,1,1,1,0),
# 		labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)
# 	) 
# 	# means
# 	# -------------------------------------
# ) # close model
# # Create an MxModel object
# # -----------------------------------------------------------------------------
# oneFactorFit <- mxRun(oneFactorModel)      
# standardizeMx(oneFactorFit)
# 
# # Compare with lavaan
# library(lavaan)
# script <- "f1 =~ x1 + x2 + x3 + x4 + x5 + x6"
# fit <- cfa(script, data=myFADataRaw, meanstructure=TRUE)
# standardizedSolution(fit)
# ## End(Not run)

Run the code above in your browser using DataLab