miPowerFit(lavaanObj, stdLoad=0.4, cor=0.1, stdBeta=0.1, intcept=0.2, stdDelta=NULL,
delta=NULL, cilevel = 0.90)
lavaan
object. If a single value is specified, the value will be applied to all parameters.lavaan
object. If a single value is specified, the value will be applied to all parameters."M"
represents the parameter is misspecified, "NM"
represents the parameter is not misspecified, "EPC:M"
represents the parameter is misspecified decided by checking the expected parameter change value, "EPC:NM"
represents the parameter is not misspecified decided by checking the expected parameter change value, and "I"
represents the decision is inconclusive.
"M"
represents the parameter is misspecified, "NM"
represents the parameter is not misspecified, and "I"
represents the decision is inconclusive.
inspect(object, "mi")
function.
First, Saris, Satorra, and van der Veld (2009, pp. 570-573) used the power to detect modification indices and expected parameter changes to evaluate model fit. First, one should evaluate whether the modification index of each parameter is significant. Second, one should evaluate whether the power to detect a target expected parameter change is high enough. If the modification index is not significant and the power is high, there is no misspecification. If the modification index is significant and the power is low, the fixed parameter is misspecified. If the modification index is significant and the power is high, the expected parameter change is investigated. If the expected parameter change is large (greater than the the target expected parameter change), the parameter is misspecified. If the expected parameter change is low (lower than the target expected parameter change), the parameter is not misspecificied. If the modification index is not significant and the power is low, the decision is inconclusive.
Second, the confidence intervals of the expected parameter changes are formed. These confidence intervals are compared with the range of trivial misspecification, which could be (-delta
, delta
) or (0, delta
) for nonnegative parameters. If the confidence intervals are outside of the range of trivial misspecification, the fixed parameters are severely misspecified. If the confidence intervals are inside the range of trivial misspecification, the fixed parameters are trivially misspecified. If confidence intervals are overlapped the range of trivial misspecification, the decision is inconclusive.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.
Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561-582.
moreFitIndices
For the additional fit indices information
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939, group="sex", meanstructure=TRUE)
miPowerFit(fit)
model <- '
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
fit2 <- sem(model, data=PoliticalDemocracy, meanstructure=TRUE)
miPowerFit(fit2, stdLoad=0.3, cor=0.2, stdBeta=0.2, intcept=0.5)
Run the code above in your browser using DataLab