## Not run:
#
# ## set some example data missing at random
# dat1 <- HolzingerSwineford1939
# dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
# dat1$age <- dat1$ageyr + dat1$agemo/12
# dat1$x9 <- ifelse(dat1$age <= quantile(dat1$age, .3), NA, dat1$x9)
#
# ## fit CFA model from lavaan's ?cfa help page
# model <- '
# visual =~ x1 + x2 + x3
# textual =~ x4 + x5 + x6
# speed =~ x7 + x8 + x9
# '
# ## use ageyr and agemo as auxiliary variables, and
# ## request robust standard errors
# out <- cfa.2stage(model = model, data = dat1, aux = c("ageyr","agemo"),
# se = "robust.huber.white")
#
# ## two versions of a corrected chi-squared test results are shown
# out
# ## see Savalei & Bentler (2009) and Savalei & Falk (2014) for details
#
# ## the summary additionally provides the parameter estimates with corrected
# ## standard errors, test statistics, and confidence intervals
# summary(out, standardized = TRUE)
#
#
#
# ## use parameter labels to fit a more constrained model
# modc <- '
# visual =~ x1 + x2 + x3
# textual =~ x4 + x5 + x6
# speed =~ x7 + a*x8 + a*x9
# '
# outc <- cfa.2stage(model = modc, data = dat1, aux = c("ageyr","agemo"),
# se = "robust.huber.white")
#
#
# ## use the anova() method to test this constraint
# anova(out, outc)
# ## like for a single model, two corrected statistics are provided
# ## End(Not run)
Run the code above in your browser using DataLab