# NOT RUN {
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit1 <- cfa(HS.model, data = HolzingerSwineford1939)
## non-nested model
m2 <- ' f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8 + x9 '
fit2 <- cfa(m2, data = HolzingerSwineford1939)
compareFit(fit1, fit2, nested = FALSE)
## nested model comparisons:
out <- measurementInvariance(model = HS.model, data = HolzingerSwineford1939,
group = "school", quiet = TRUE)
compareFit(out)
# }
# NOT RUN {
## also applies to lavaan.mi objects (fit model to multiple imputations)
set.seed(12345)
HSMiss <- HolzingerSwineford1939[ , paste("x", 1:9, sep = "")]
HSMiss$x5 <- ifelse(HSMiss$x1 <= quantile(HSMiss$x1, .3), NA, HSMiss$x5)
HSMiss$x9 <- ifelse(is.na(HSMiss$x5), NA, HSMiss$x9)
HSMiss$school <- HolzingerSwineford1939$school
HS.amelia <- amelia(HSMiss, m = 20, noms = "school")
imps <- HS.amelia$imputations
## request robust test statistics
mgfit2 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm")
mgfit1 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",
group.equal = "loadings")
mgfit0 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",
group.equal = c("loadings","intercepts"))
## request the strictly-positive robust test statistics
compareFit(scalar = mgfit0, metric = mgfit1, config = mgfit2,
argsLRT = list(asymptotic = TRUE,
method = "satorra.bentler.2010"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab