HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
## non-nested models
fit1 <- cfa(HS.model, data = HolzingerSwineford1939)
m2 <- ' f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8 + x9 '
fit2 <- cfa(m2, data = HolzingerSwineford1939)
(out1 <- compareFit(fit1, fit2, nested = FALSE))
summary(out1)
## nested model comparisons: measurement equivalence/invariance
fit.config <- cfa(HS.model, data = HolzingerSwineford1939, group = "school")
fit.metric <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = "loadings")
fit.scalar <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = c("loadings","intercepts"))
fit.strict <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = c("loadings","intercepts","residuals"))
measEqOut <- compareFit(fit.config, fit.metric, fit.scalar, fit.strict,
moreIndices = TRUE) # include moreFitIndices()
summary(measEqOut)
summary(measEqOut, fit.measures = "all")
summary(measEqOut, fit.measures = c("aic", "bic", "sic", "ibic"))
Run the code above in your browser using DataLab