This function assesses discriminant validity through the
heterotrait-monotrait ratio (HTMT) of the correlations (Henseler, Ringlet &
Sarstedt, 2015). Specifically, it assesses the arithmetic (Henseler et al.,
) or geometric (Roemer et al., 2021) mean correlation
among indicators across constructs (i.e. heterotrait--heteromethod
correlations) relative to the geometric-mean correlation among indicators
within the same construct (i.e. monotrait--heteromethod correlations).
The resulting HTMT(2) values are interpreted as estimates of inter-construct
correlations. Absolute values of the correlations are recommended to
calculate the HTMT matrix, and are required to calculate HTMT2. Correlations
are estimated using the lavaan::lavCor()
function.
htmt(model, data = NULL, sample.cov = NULL, missing = "listwise",
ordered = NULL, absolute = TRUE, htmt2 = TRUE)
A matrix showing HTMT(2) values (i.e., discriminant validity) between each pair of factors.
lavaan lavaan::model.syntax()
of a confirmatory factor
analysis model where at least two factors are required for indicators
measuring the same construct.
A data.frame
or data matrix
A covariance or correlation matrix can be used, instead of
data=
, to estimate the HTMT values.
If "listwise"
, cases with missing values are removed listwise
from the data frame. If "direct"
or "ml"
or "fiml"
and the estimator is
maximum likelihood, an EM algorithm is used to estimate the unrestricted
covariance matrix (and mean vector). If "pairwise"
, pairwise deletion is
used. If "default"
, the value is set depending on the estimator and the
mimic option (see details in lavaan::lavCor()
).
Character vector. Only used if object is a data.frame
.
Treat these variables as ordered (ordinal) variables. Importantly, all
other variables will be treated as numeric (unless is.ordered
in
data=
). See also lavaan::lavCor()
.
logical
indicating whether HTMT values should be
estimated based on absolute correlations (default is TRUE
). This
is recommended for HTMT but required for HTMT2 (so silently ignored).
logical
indicating whether to use the geometric mean
(default, appropriate for congeneric indicators) or arithmetic mean
(which assumes tau-equivalence).
Ylenio Longo (University of Nottingham; yleniolongo@gmail.com)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115--135. tools:::Rd_expr_doi("10.1007/s11747-014-0403-8")
Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2---An improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management & Data Systems, 121(21), 2637--2650. tools:::Rd_expr_doi("10.1108/IMDS-02-2021-0082")
Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119--134. tools:::Rd_expr_doi("10.1007/s11747-015-0455-4")
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
dat <- HolzingerSwineford1939[, paste0("x", 1:9)]
htmt(HS.model, dat)
## save covariance matrix
HS.cov <- cov(HolzingerSwineford1939[, paste0("x", 1:9)])
## HTMT using arithmetic mean
htmt(HS.model, sample.cov = HS.cov, htmt2 = FALSE)
Run the code above in your browser using DataLab